Galton-watson Trees with Vanishing Martingale Limit
نویسندگان
چکیده
We show that an infinite Galton-Watson tree, conditioned on its martingale limit being smaller than ε, agrees up to generation K with a regular μ-ary tree, where μ is the essential minimum of the offspring distribution and the random variable K is strongly concentrated near an explicit deterministic function growing like a multiple of log(1/ε). More precisely, we show that if μ ≥ 2 then with high probability as ε ↓ 0, K takes exactly one or two values. This shows in particular that the conditioned trees converge to the regular μ-ary tree, providing an example of entropic repulsion where the limit has vanishing entropy. Mathematics Subject Classification (2010): 60J80 (Primary) 60F10, 60K37.
منابع مشابه
A Conditioning Principle for Galton–watson Trees
We show that an infinite Galton-Watson tree, conditioned on its martingale limit being smaller than ε, converges as ε ↓ 0 in law to the regular μ-ary tree, where μ is the essential minimum of the offspring distribution. This gives an example of entropic repulsion where the limit has no entropy.
متن کاملA note on the scaling limits of contour functions of Galton-Watson trees
Recently, Abraham and Delmas constructed the distributions of super-critical Lévy trees truncated at a fixed height by connecting super-critical Lévy trees to (sub)critical Lévy trees via a martingale transformation. A similar relationship also holds for discrete Galton-Watson trees. In this work, using the existing works on the convergence of contour functions of (sub)critical trees, we prove ...
متن کاملGalton – Watson trees , random allocations and condensation : Extended abstract
We give a unified treatment of the limit, as the size tends to infinity, of random simply generated trees, including both the well-known result in the standard case of critical Galton-Watson trees and similar but less well-known results in the other cases (i.e., when no equivalent critical Galton-Watson tree exists). There is a well-defined limit in the form of an infinite random tree in all ca...
متن کاملA Note on Conditioned Galton-watson Trees
We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten’s tree. This yields elementary proofs of Kesten’s result as well as other known results on local limit of conditioned Galton-Watson trees. We then apply this condition to get new results, in the critical and sub-critical cases, on the limit in distribution of a Galton-W...
متن کاملNoncrossing trees are almost conditioned Galton-Watson trees
A non-crossing tree (NC-tree) is a tree drawn on the plane having as vertices a set of points on the boundary of a circle, and whose edges are straight line segments that do not cross. In this paper, we show that NC-trees with size n are conditioned Galton–Watson trees. As corollaries, we give the limit law of depth-first traversal processes and the limit profile of NC-trees.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012